
, Technical Memorandum 82032

Super-AlfvenicPropagationof Cosmic
Rays: The Role of Streaming Modes

(_ASA-TM-820 32) SUPEE-ALFVEH IC PEOPAGATIO_ _81-12975
OF COSMIC RAYS: THE ROLE OF STREARIMG MODES

(_ASA) 15 p HC A02/_F A01 CSCL 03B
Unclas

G3/93 39822

PhilipJ. Morrison, John S. Scott, Gordon D. Holman
and James A. Ionson

OCTOBER 1980

_.- Nat,onal Aeronautm_..sandI.
:" S;>aceAdmln_trat,on

Godlllrd Spice Right C.lmtll
' Gr6,anbelt. Marytand 20771

,, __ _ j

1981004463



T_ 82032

SUPER-ALFVENIC PROPAGATION OF COSMIC RAYS

THE ROLE OF STREAMING MODES •

Philip J, Morri_n,* John S, Scott," and Gordon D, Holrn_n

l_l:_rxrnent of Phys.icsincl Astronomy, Uni_,_'_ly of M_'yhmd

Collel_ Park, Mnm/land

and

,lamesA ]onson

[Jborltory for ._tronumy and Solar Physics,NASA C,_ddard Splc_ F|illht Center

Gr_en_lt, Maryland

October 1980

GODDARD SPACE FLIGHT CENTER
Greenbelt, M_yland

1981004463-002



SUPER-ALFVEN1C PROPAGATION OF COSMIC RAYS:

THE ROLE OF STREAMING MODES

Philip J. Mormon, John S. Scott, and Gordon D. Holman

_ Department of Physics and Astronomy, Umven'sity of Maryland

College Park, Mm'ylznd

and

Jame,, A. Ionson

Laboratory for Astronomy and Solar Fhysics, NASA Goddm'd Space Flight Center

Greenbelt, Maryland

ABSTRACT

Numeroo_ cosmic ray propagation and acceleration problems r_quire knowledge of

the propagation sp_d oi" relativistic particles through an ambient plaun_ l:_vious cal-

culations have indicated that self--generated turbulence scatters relattvistlc particles and

reduces their bulk streaming velocity to ti_e Alfven speed. Th_s result has been incor-

porated into all currently prominent theories of cosmic ray ac_le_,,tion and propagation.

We, however, demonstrate that super-Alfvenic propagation ts indeed posstble for a wide

range of physical parameters. This fact dramatically affects the predictions of tkese

models.

PR£G_EDh'_P.J_. BLANKNOT
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SUPER-ALFVENIC PROPAGATION OF COSMIC RAYS:

THE ROLE OF STREAMING MODES

A thorough understanding of the physical proces_s which affect the'streaming of relativistic

panicles through a magnetized therrrud plism,t it crucial to the problem of the orilin of cosmic

rays trod has great importance for a number of astrophysical problems. In recent years, out ob-

servattorml knowlodge of astrophysical tituations where panicle (coemicray)strtmmin8itimpor-

tant hasincnsasedtremendously,therebyunderscoringtheimportanceof suchartunderrstzndin$

Specifically, these fundamental processes mutt be understood m order th,tt one can conttruct

self--consistent particle acceleration models revolving the repqmted scattering of reLativistic tmrtictm

between a shock front, or turbulence m the wake of the shock, and scattering c, nters'in the pro-

shock medium. 1,2_3 An even rno_ basic related question is whether corm_icrays can escape ac-

celeration regions (such as supernova remnants) without experiencing disastrous enerlD' lotte_ 4

A number of authors s,6 have suggested that relativistic l_trticles cannot stream.freely along

an amblent rnagnetic field, but will be limited to a mean parallel propagation velocity on the

order of the Alfven speed. This occurs because the strearnir_ particles amplify the pre-existing

level of Alfven waves, which in turn resonantly scatter the particles and reduce their strtaminli

velocity. In order to see how dramatically this idea hits aftected theoretical thought on the origin

of cosmic rays, one need only look at the proceedings of the recent La Jolla Institute Conference

on Particle Acceleration. "/

The theoretical picture of trapping at the Alfven speed however, seems to contradict obtmr-

vat'ions pertaining to a number of astrophysical pltsmu (e.g., in supernova rernmnt_ clu_tert of

-'. galaxies, extragalactic radio sources, etc.) which stronlfly indicate that particles do, in fact, prOl:m-

•, gate at ,_peeds sigr,iricantly greater than the &liven speed. A resolution of this lmradox for _ > 1

plaLmas has reo:ntly been SUil_sted. s
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However,intl_ note,w_ present• more fundAmemtzliolutioqto theproblem(andwe deal

with_9<< l plasmas)whichizapplicabletoplAgnu with_eten whichsrcexpectedtoexist

inregionsofparticleacceleration.Spe.cifi_lly,_,,findthatinr_zionswherecosmicraypl-ssure

is sillniflcant, l&It the mean streaming _W of the 6osznic rays can 6e much greater than the

localAlfvenspeed,Vx . Thisresultsternsfrom thefactt_atu theertergydensityoftherela_v-

iJtieally stre_minl particles increases, so must the phase and stoup velocities of the dMtabilCted "

wave=. We tlm indicat¢_ that the cosmlc ray p4ffticles could b_-orne trapped by them SUl_S_.
#

Alfvenic streaming modes, r_ in hilhly _aper--Alfvenic particle Prol_ption. In fact,

result_tl_',iclepml_t_tionspeedcznt_ highenouShto li_p'dflcantlyreducetheefficiencyof

l_u'ticleaccelerationmechanismswhichrelyupon thecompressionof thecosmicraydistribution

r_ultinlfrom multipleshockcrossings.TM Insuchmodelstherepeatedshockcrossin_m'_

oc_sionedby upstrezmrt.._nsntpaniclescztleringby waveswhich_ travelingata speed(i.e.,

theAlfvenspeed)whichismuch slowerthanthespeedof theshock.Hence,intheshockframe,

the shock and the upstream scattering centers are converging, and the cosmic rays are compressed.

If, ss we show, the particles "outrun" the shock, the particle enerlp/ _ is limited to that ob-

tzinedin_ singleshockencounter.Furthermore,eveniftheupst,x,_mwavespeedisonlyofthe

same ordez as the shock speed, then the energy gamed per shock crossing is _[s_ r_duced, since

the rate of cosmic ray "compression" (vlhock - vplukm) is diminished,

Three components are t.tsumecl to c_mpr_f: the r,y_tc,'_,,_.-'., ._ ._[d backll_und of electrons

and ions, and relativistic ions (these are normally not included in the dielectric bec4uae of low

number dentlty) which are str_ ptndlel to tn ambient f'_Id B, We further ts_une that the

system ia infinite and hcmol_neou_ with zero net c2Utrl_and zero net current, Our usumption

of _ro net current stem_ from the expectation that the cold b_cklround electro_ will respond

to tn inductive "back" emf tmocitted with the r_Ittivi_tic Ion_, This b_ck emf will ia turn drive,

a Rturn c_nt of electrom, with a nelllilibty _ drift velocity, which r_sults in al_proximate

current neutr_tion. A timple model di=tribut_on function for the re_ttv,=tic ion= which i=

1981004463-005



,eparab_ in eneqy E Lqd the _ of th_ pitch tn_e fj,t) wi_ be _t_ t_to our

_d _ _n by
G

f(E,_) - _ F(E)SO,) (!)

with e " nk/n t _!

ttO E < E. -,
- (2)

F(E) _(_.l)clE,I..aB._l,S 3 'E)'E,

ILJld _

_)- 1/2(! + _<t,>_) (3)

where nr bi the numberder.aity of the reLIUviltt_ _ _ whtc,,k_ t_ II

v - < U _> c tnd where the "cutofV' energy E. is mociated with t relativistic7. • E,/_c _ >> 1.

The phttmadielectric D for low,-fr_uency eSectromtgneUcwavespt'opepULrtllpand_ to the trn-

blent ma4p_eticfield is iiJvenby

D - k2_/_ _ - c2f_, - Da . 0 (4)

Z (' L <'' :
(el',Mont._mer_, LndTklrn_, 11L=_uat..k_|O,l, tnn_ormed to 1F:.,,u space)rei:_ntli.ttll the c.o,nl3"b

bution from the rehitivisUctllystreamingion& in equ_Uon(S) P - ± I repretentathe temmof .1

polarization ((+) = right handed), The abovedispemon relation (t,e., equtUon (4)) hu been

u_,ed numerlcaJJyu_minl equtUonm(1)_3) _d equaUoP (4), to The re_VlUlt rwultl tre tJJut-

tinted in Fl4ptre 1, The mUo or the unttabte waver _ velocity to the Atfv_ tpeed ts giwm

by the solid curve tnd the ratio of the Ip'owth rateto t_ n__ i_m _toff llya;/l_

(i'i,- f_/_,) _, given by tM dmJ_d curve, Note U_t tb_ pilUm velocity tad IFowt_ him both

maximize at mway.umber whic_ it am_ated with the _per-AJfv_tc tt_tmi_ mode" (L_,

: kc]_'1, - i), This folJow_from the facl that the raUe of the _ INCtt_m' dIMs_Yt¢to

theb._e ptuma_d_,ct_cbecome._ t_Lqu_ty(t,..,V_D_/c_ >> t) for
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i wav_ambers of theor_r of_/c Our _ also¢.Icaz'lydemonatrat¢thatAlf_srlwavc:g
i

1 which are found at both high and tow wavenumbers, are rtlati_eiy stable compared to tl_¢ _pcr-
Alfvenic str_minil mode. It is _mportant to note that this results from the fact that the majority

of the comlic rays are r_onant with the slreamin_ mode, u iJ indicated by the shaded region in

Figure 1. The shading represents the number of partidem remnant with waves of a given wade-

number, with darker shading corr_pondiali to a _ number. Sinc_ the resonance condition,

kc/fl, = 3',/p3', depends upon both the pitch angle and panicle energy and, since the number of

particles falls off with in_..amng 3' and dccrcam_ 9., it's clear that the bulk of the cosmic rays

are resonant with the waves with the higher _ vl_city (i.e,, _ m_'camin8 mode).

Our numerical results show that Iccurtte analytic approximations to the solution can AlSO

be obtained through use of Plemelj't formula (even though P > o_), since P << fI,. We find

the following normalized form for the ditch reLltion:

_a _ _a + A_ - B_ + C + i[2_] _ + B_ + AI= + D] = 0 (6)

where

l_ fli
, ¢_ =--, _ = -- and t'Z, =--

fI, gl, "r,
and where

A = .-.e<p> + l_,e 1 - (7)
4kc

B - lr "_,eR l (8)

, I- mi\'_".) " 3 <v>N 2 Pc<V>

(9)

+ N! - P_ l',e<,a>
.q.

4
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with:

N= = ws4 dw dV (1 - t__) (I 1)

o#fo" f.' (5
Re = ws-* dw d# (1 - _a2) I_(.) 6 - /a + _ (12)

l kc

(iS+2) + 3(S+3) </a ># = = 1
I= - (13)

a-2

and f_ k_lc. _fl,kc< 1

Wu = (14)
kc

_> 1
CI,

From equation (6) w_ find that

R_+D
- (Is)

-2_ + A

snd

_2 _ it2 + A_ ,- B]_ + C = O (16)

kc

Solsan.g equitions (15) and (16) for the wave of maximum growth (i.e,, when -- : 1) we find
fl.

that

(_'nU =u kV A I +--_, e<_>c 2 (17)
5

-t Curvet of rmzx versuse for wznou.t< _ > ant shown in Fqlur_ 2. Clearly, for ")',( </J >

c2 > VA2 the phgte velocity of this iltowln8 wsve exceedsthe Alfv_n speed. We note her_,
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however, that the reipon of applicability is limited to e < VA/C;m o,'der to extend the applJcabiJ-

ity of these calculationsto e > _A/_, a muse realistic ,,nd detailed model of the ¢lectroa retucn

current would be needed.

We seethen, that an initially relativistically streaming (< # > --. 1) be.amof cosmicmy=

(with _ pazallel momentum flux) produceswaveswith phasevelocities,Vph,much greater

than VA, to wit"

V_ = _', e <# > c (18)

For the wavesof maxumumgrowth, kc/fl, ..- 1. Therefore, to order of magnitude, the

phasevelocity of the super.-Alfvenicstreaming mode Lsgiven by

vph ~ c(3',e) _ (19)

which for many cas¢s of interest is significantly lirgtr than the Alfven speed. In light of thi_

fact, it Is important to d_scuss how the distribution of streaming cosmic rays will be affected by

the waves with Vph given by equation (19). Note that quas_-hnear relaxation ts probably not the

relevant r_l.,xat_on process since the waves ar_ coherent, i.e., the random pha_ approximation

tpl > tcoherenc=... i/Aw) does not hold. This is due to the fact that r > w (c.f., Figur_ 2) and_

with _ = k_ + fl,#w¢ have Ac,J = kci_ +/_cA_/V_ and therefor_ A_ ~ wt_/_ -.- w. Hen.ca

F > A_, in contradictior. *o the random phm._ approximation.

The fact that the rapidly growing waves are highly coherent leads one to expect that electro- i
[

magnetic wave trapping v,tll occur, in analogy to the work of Davidson et al. l( These authoi3 !

rind that trapping o_ when the hnear Irowth tin_ become= oompar_.hh, to the magnetic [

T bounce time ta .,. 21r('7,rn_c/eVllkSB)'_, whet_ 8B is the wave malnetic field strength. We find

" that trapping of the cosmic ray= by the muper-Alfvenk: streaming modes o_un when the wave I
m

level i. 8B/B (r/l'Is)a/# << I. Therefore, a high wave level is not requirtd in order that the !

cosmicray= becometrapped m the magneticpotential well of the sRm..an'angmode. We therefore

6
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anticipate that the further development of thi_ instability will proceed tmtflOllO_,.qlyto the weLl

known non-linear development of an electrostatic beam-plasnut instability (Drummond et el.Is);

the trapped cosmi¢, rays will be carried along by the streaming mode which, as we have tlrtady

demonstrated, propagates at super--Alfventc speeds. We note here that it i-_not within the scope

of this paper to study the details of such non-Linear interactions. It is mpl:mrent, however, that

non-linear effects (i.e., trapping) will dominate ,,atsi-tincar relzxation; these non-hnetr effects

allow super-Alfvenic propagation of cosmic r_ys.

A specific example which dlustrates the importance of these results is that of cosmic rtyt

escaping from a young supernova remnant (e.g., Catseopia A exhibits strong observational evidence

of ongoing particle acceleration). In this _se e -,- tO-_, VA/C _ 7.27 x I0 "_ (for the ambient

medium) and "r, --- I0 which, from equation f l9), results m a super-Alfvenic streaminll mode

whose phase veloclty V_ -,- 435 VA . This velocity is comparable to that of the supernova

shock, Vt, and hence the effect disct_ het'e it expected to significantly impact theories of

cosmic ray escape from the supernova and theorie,, of particle acceleration which rely on acceler-

ation at the shock front. Such theories 1,1,3 (e.g., Axford et al., Bell} assume that V_ << Vs.

However, 5u_ at least initmlly V_ ~ Vt_the spectrum of cosmtc my*, dN/dE, produced by
d log N

these acceleratton mechanixms must be steeper than the currently predicted case _ ,' -2.
dlogE

Clearly, shock wave acceleration theories must be modified in order to discern how large thit

effect is. t
i

In concl,-,ion, we have applied the pLttn'm phyti_ of stretrnintt modes to cotmic ray prop_.

gttion and have demonstrated that the phate velocity of thva¢ w-svca i_ tuper--Alf_nic in a vtri-

' ety of cotmlc tettlrtlst, et;pechdly in fleet of ptrtic.le _coelerttk:m. ) We ha_ alto indictted that

the cosmic ray ptrticlet could very easily become trapped in the magnetic potential well of the,e

streammil modes. The natural consequence of this trapping is that the cosmic ray ptrti:les are

carried ,_lonll by the streaming mode at hilhly super.-AJrvenic speeds. The enhanced phase vek>c-

ity of the streaminll mo6¢, u discussed here, as wel'. as at_:)ciatedt,_on-.4inear effectt (e.ll., trapping)

7

1981004463-010



-All

I#

F_gvne I
Plot of the r_orm_hzed phas_ v_oclty (sohd Curve)and ITowth rate (dashed curtal vcnu_ th_
vnl_number, 1"_ _ded r_l_on n_pn_nts tee number of r_tick_ thjt Lne ret_onant _lh

_, xcll_cesof I I_ven wlvenumber, Ty1_lcal Sul_rnova p,_ran_ter_ have Nen u_¢d,
, Le., _ -,. IO"_, V,/c... 7,27 .x IO"_ and "_.~ IO.
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will significantly alter current models of co6mic ray acceleration and propa_ahnn, clear4y mohvating

more detailed ;nvestigations of the impact thg, our results v,qll have on these models
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